domingo, 27 de junio de 2010

RADAR

El radar (término derivado del acrónimo inglés RAdio Detection And Ranging, “detección y medición de distancias por radio”) es un sistema que usa ondas electromagnéticas para medir distancias, altitudes, direcciones y velocidades de objetos estáticos o móviles como aeronaves, barcos, vehículos motorizados, formaciones meteorológicas y el propio terreno. Su funcionamiento se basa en emitir un impulso de radio, que se refleja en el objetivo y se recibe típicamente en la misma posición del emisor. A partir de este "eco" se puede extraer gran cantidad de información. El uso de ondas electromagnéticas permite detectar objetos más allá del rango de otro tipo de emisiones (luz visible, sonido, etc.)

Entre sus ámbitos de aplicación se incluyen la meteorología, el control del tráfico aéreo y terrestre y gran variedad de usos militares.
Antena de radar de detección a larga distancia

Historia

En 1864, James Clerk Maxwell describe las leyes del electromagnetismo. En 1888, Heinrich Rudolf Hertz demuestra que las ondas electromagnéticas se reflejan en las superficies metálicas. Durante el Siglo XX, muchos inventores, científicos e ingenieros han contribuido en el desarrollo del radar, impulsados sobre todo por el ambiente prebélico que precedió a la Segunda Guerra Mundial, y a la propia Guerra. Los grandes países que participaron en ella fueron desarrollando de forma paralela distintos sistemas radar, aportando grandes avances cada uno de ellos para llegar a lo que hoy conocemos sobre los sistemas radar. En 1904 Christian Huelsmeyer patenta el primer sistema anticolisión de buques utilizando ondas electromagnéticas Desarrollo de la radio y de la transmisión inalámbrica (por Marconi, entre otros), gracias a lo cual se desarrollan las antenas. En 1917, Nikola Tesla establece los principios teóricos del futuro radar (frecuencias y niveles de potencia). En 1934, y gracias a un estudio sistemático del magnetrón, se realizan ensayos sobre sistemas de detección de onda corta siguiendo los principios de Nikola Tesla. De este modo nacen los radares de ondas decimétricas.

Principios

Reflexión

Las ondas electromagnéticas se dispersan cuando hay cambios significativos en las constantes dieléctricas o diamagnéticas. Esto significa que un objeto sólido en el aire o en el vacío (es decir, un cambio en la densidad atómica entre el objeto y su entorno) producirá dispersión de las ondas de radio, como las del radar. Esto ocurre particularmente en el caso de los materiales conductores como el metal y la fibra de carbono, lo que hace que el radar sea especialmente indicado para la detección de aeronaves. En ocasiones los aviones militares utilizan materiales con sustancias resistivas y magnéticas que absorben las ondas del radar, reduciendo así el nivel de reflexión. Estableciendo una analogía entre las ondas del radar y el espectro visible, estos materiales equivaldrían a pintar algo con un color oscuro.

La reflexión de las ondas del radar varía en función de su longitud de onda y de la forma del blanco:

Si la longitud de onda es mucho menor que el tamaño del blanco, la onda rebotará del mismo modo que la luz contra un espejo. Si la longitud de onda es mucho más grande que el tamaño del blanco, lo que ocurre es que ésta se polariza (separación física de las cargas positivas y negativas) como en un dipolo (véase: Dispersión de Rayleigh). Cuando las dos escalas son similares pueden darse efectos de resonancia. Los primeros radares utilizaban longitudes de onda muy elevadas, mayores que los objetivos; las señales que recibían eran tenues. Los radares actuales emplean longitudes de onda más pequeñas (de pocos centímetros o inferiores) que permiten detectar objetos del tamaño de una barra de pan.

Las señales de radio de onda corta (3 kHz-30 MHz) se reflejan en las curvas y aristas, del mismo modo que la luz produce destellos en un trozo de cristal curvo. Para estas longitudes de onda los objetos que más reflejan son aquellos con ángulos de 90º entre las superficies reflectivas. Una estructura que conste de tres superficies que se juntan en una esquina (como la de una caja) siempre reflejará hacia el emisor aquellas ondas que entren por su abertura.

Este tipo de reflectores, denominados reflectores de esquina (corner reflectors, ver imagen a la derecha), se suelen usar para hacer "visibles" al radar objetos que en otras circunstancias no lo serían (se suelen instalar en barcos para mejorar su detectabilidad y evitar choques). Siguiendo el mismo razonamiento, si se desea que una nave no sea detectada, en su diseño se procurará eliminar estas esquinas interiores, así como superficies y bordes perpendiculares a las posibles direcciones de detección. De ahí el aspecto extraño de los aviones "stealth"(avión furtivo).

Todas estas medidas no eliminan por completo la reflexión debido a la difracción, especialmente para longitudes de onda grandes. Otra contramedida habitual es arrojar cables y tiras metálicas cuyo largo es media longitud de onda (chaffs) con la idea de cegar al radar; son efectivas, si bien la dirección hacia la que se reflejan las ondas es aleatoria cuando lo óptimo sería dirigir la reflexión hacia el radar que se quiere evitar. El factor que da la medida de cuánto refleja un objeto las ondas de radio se llama "sección radar cruzada" (σ).

Polarización

El campo eléctrico de la señal que emite un radar es perpendicular a la dirección de propagación. La dirección de dicho campo determina la polarización de la onda. En función de la aplicación, los radares usan:

Polarización horizontal.
Polarización vertical.
Polarización lineal: Permite detectar superficies de metal.
Polarización circular: Adecuada para minimizar la interferencia causada por la lluvia (pero debe evitarse para radares meteorológicos que lo que buscan es cuantificar las precipitaciones). Polarización aleatoria: Adecuada para detectar superficies irregulares como rocas (se usa en radares de navegación).

Interferencias

Los sistemas radar deben hacer frente a la presencia de diferentes tipos de señales indeseadas y conseguir centrarse en el blanco que realmente interesa. Fuentes posibles de interferencias:
Internas Externas De naturaleza pasiva Ejemplos de interferencia pasiva: agua salada (afecta a la conductividad y puede contribuir a una degradación de la señal), tierra conductora. De naturaleza activa (o interferencia eléctrica o ruido). Ejemplos de interferencia activa: circuitos de los semáforos, comunicaciones de radio, torres microondas, televisión por cable, transmisión de datos de uso general, sistemas de seguridad, líneas de alto voltaje y líneas telefónicas. La capacidad del sistema radar de sobreponerse a la presencia de estas señales define su relación señal/ruido (SNR). Cuanto mayor sea la SNR del sistema, tanto mejor podrá aislar los objetivos reales de las señales de ruido del entorno.

Ruido

El ruido es una fuente interna de variaciones aleatorias de la señal, generado en mayor o menor medida por todos los componentes electrónicos. Típicamente se manifiesta en variaciones aleatorias superpuestas a la señal de eco recibida en el radar.
Cuanta menor sea la potencia con que llega la señal de interés, más difícil será diferenciarla del fondo de ruido. Por tanto, la más importante fuente de ruido aparece en el receptor, por lo que debe dedicarse un gran esfuerzo a tratar de minimizar estos factores. La figura de ruido es una medida del ruido producido por el receptor en comparación con un receptor ideal y debe ser minimizada.

El ruido también puede estar causado por fuentes externas al sistema, siendo sobre todo de gran impacto la radiación térmica natural del entorno que rodea al blanco que se desea detectar. En sistemas radar modernos, debido al gran rendimiento de sus receptores, el ruido interno es típicamente igual o menor que el externo. Una excepción es el caso en el que el radar está dirigido al cielo abierto; en este caso apenas se produce ruido de Johnson-Nyquist, también conocido como ruido térmico.

Clutter

El término clutter hace referencia a todos aquellos ecos (señales de RF) recibidos por el radar que son, por definición, no deseados.


El multitrayecto de la señal de eco hace que el radar detecte "blancos fantasma"

Métodos para detectar y neutralizar el clutter

Generalmente, se fundamentan en el principio de que el clutter apenas varía entre diferentes barridos del radar. Por tanto, al comparar barridos consecutivos se comprobará que el blanco real se mueve, mientras que los ecos de clutter son estacionarios. El clutter marítimo se puede reducir empleando polarización horizontal, mientras que el de la lluvia se reduce con polarizaciones circulares (nótese que los radares meteorológicos utilizan polarización lineal porque lo que les interesa es precisamente detectar la lluvia). El método CFAR es otra técnica basada en el hecho de que los ecos debidos al clutter son mucho más numerosos que los ecos producidos por objetivos de interés. Este método permite mantener un valor constante de la probabilidad de falsa alarma haciendo un promediado adaptativo del nivel real de ruido y ajustando automáticamente la ganancia del receptor. Si bien esto no ayuda cuando el blanco está rodeado por clutter muy fuerte, puede permitir identificar objetivos más o menos claros. En radares actuales este proceso está controlado por software. Es beneficioso en sistemas en los que sea crítico mantener una determinada probabilidad de falsa alarma. En radares de control de tráfico aéreo actuales se emplean algoritmos para identificar blancos falsos comparando los ecos recibidos con otros adyacentes y calculando la probabilidad de que sea real por los datos de altura, distancia y tiempo. Otros métodos se centran en reducir la relación señal/clutter.


Pantalla de un radar marino.


Procesado de Señal y Diseño de Radares










Una forma de medir la distancia entre el radar y un objeto es transmitir un pequeño pulso electromagnético y medir el tiempo que tarda el eco en volver. La distancia será la mitad del tiempo de tránsito multiplicado por la velocidad del pulso (300.000 km/s):

r= c*t/2

r = distancia estimada
c = velocidad de la luz
t = tiempo de tránsito

Una estimación precisa de la distancia exige una electrónica de elevado rendimiento. La mayor parte los radares usan la misma antena para enviar y recibir, separando la circuitería de transmisión y recepción mediante un circulador o duplexor. Por ello, mientras se está transmitiendo el pulso no se puede recibir ningún eco. Esto determina la llamada "distancia ciega" del radar, por debajo de la cual éste es inútil. Esta distancia viene dada por:


rBLIND= c*τ/2
rBLIND = distancia ciega
c = velocidad de la luz
τ = tiempo que se tarda en transmitir un pulso

Si se quiere detectar objetos más cercanos hay que transmitir pulsos más cortos. Del mismo modo, hay un rango de detección máximo (llamado "distancia máxima sin ambigüedad"): si el eco llega cuando se está mandando el siguiente pulso, el receptor no podrá distinguirlo. Para maximizar el rango hay que aumentar el tiempo entre pulsos (T):
rUNAMB= c*T/2

rUNAMB = Distancia máxima sin ambigüedad
c = Velocidad de la luz
T = Tiempo entre dos pulsos
Hay un compromiso entre estos dos factores, siendo difícil combinar detección a corta y a larga distancia: para detectar a corta distancia hay que hacer los pulsos más cortos, lo que implica menor potencia, lo que implica ecos más débiles y por tanto menor alcance. Se puede aumentar la probabilidad de detección mandando pulsos con mayor frecuencia, pero nuevamente, esto acorta la distancia máxima sin ambigüedad. La combinación de T y τ que se elija se llama "patrón de pulsos" del radar. En la actualidad los radares pueden muchas veces cambiar su patrón de pulsos de forma electrónica, ajustando dinámicamente su rango de funcionamiento. Los más modernos funcionan disparando en el mismo ciclo dos pulsos diferentes, uno para detección a larga distancia y otro para distancias cortas.

La resolución en distancia y las características de la señal recibida en comparación con el ruido dependen también de la forma del pulso. A menudo este se modula para mejorar su rendimiento gracias a una técnica conocida como "compresión de pulsos".
Modulación en frecuencia

Otra forma de estimar distancias en un radar se basa en la modulación en frecuencia. La comparación de la frecuencia de señales es por norma más precisa y sencilla que la comparación de tiempos. Por eso, lo que se hace es emitir una señal (una sinusoide) a una frecuencia que va variando de forma constante en el tiempo, de modo que cuando llega el eco, su frecuencia será diferente de la de la señal original; comparándolas se puede saber cuánto tiempo ha transcurrido y por tanto cuánta distancia hay hasta el blanco. A mayor desvío en frecuencia mayor distancia.
Esta técnica puede emplearse en radares de onda continua (CW, en lugar de a pulsos se transmite todo el tiempo) y a menudo se encuentra en altímetros a bordo de aviones. La comparación en frecuencias es similar que la que se usa para medir velocidades (ver subapartado siguiente). Algunos sistemas que usan esta técnica son el AZUSA, el MISTRAM y el UDOP.

Medida de velocidades

La velocidad es el cambio de distancia de un objeto respecto al tiempo. Por tanto, para que un sistema radar pueda medir velocidades no hace falta más que añadirle memoria para guardar constancia de dónde estuvo el objetivo por última vez. En los primeros radares, el operador hacía marcas con un lápiz de cera en la pantalla del radar, y medía la velocidad con una regla de cálculo. Hoy día, este proceso se hace de forma más rápida y precisa usando ordenadores.
Radar de pistola para la medición de velocidad

Sin embargo, si la salida del transmisor es coherente (sincronizada en fase), hay otro efecto que puede usarse para medir velocidades de forma casi instantánea sin necesidad de dotar al sistema de memoria: el efecto Doppler. Estos radares aprovechan que la señal de retorno de un blanco en movimiento está desplazada en frecuencia. Con ello, son capaces de medir la velocidad relativa del objeto con respecto al radar. Las componentes de la velocidad perpendiculares a la línea de visión del radar no pueden ser estimadas sólo con el efecto Doppler y para calcularlas sí haría falta memoria, haciendo un seguimiento de la evolución de la posición en azimut del objetivo.
También es posible utilizar radares no pulsados (CW) que funcionen a una frecuencia muy pura para medición de velocidades, como hacen los de tráfico. Son adecuados para determinar la componente radial de la velocidad de un objetivo, pero no pueden determinar distancias.

Reducción del efecto de inteferencias

Los sistemas radar usan procesado de señal para reducir los efectos de las interferencias. Estas técnicas incluyen la indicación de objetivo móvil (MTI), radares doppler pulsados, procesadores de detección de objetivos móviles (MTD), correlación con blancos de radares secundarios (SSR) y procesado adaptativo espacio-temporal (STAP). En entornos con fuerte presencia de clutter se usan técnicas CFAR y DTM.

Diseño de radares

Un radar consta de los siguientes bloques lógicos:

Un transmisor que genera las señales de radio por medio de un oscilador controlado por un modulador. Un receptor en el que los ecos recibidos se llevan a una frecuencia intermedia con un mezclador. No debe añadir ruido adicional. Un duplexor que permite usar la antena para transmitir o recibir. Hardware de control y de procesado de señal. Interfaz de usuario.

Diseño del transmisor

Oscilador

El núcleo del transmisor lo forma un dispositivo oscilador. La elección de este se realiza en virtud de las características que se requieren del sistema radar (coste, vida útil, potencia de pico, longitud de los pulsos, frecuencia...) Los osciladores más utilizados son:

Magnetrón: es el más utilizado a pesar de que se trata de una tecnología algo vieja. Son pequeños y ligeros. Pueden funcionar a frecuencias de entre 30 MHz y 100 GHz y proporcionan buena potencia de salida.
Klistrón: algo más grandes que los anteriores, llegan a funcionar solamente hasta los 10 GHz. La potencia de salida que proporcionan puede quedarse corta en algunos casos. TWT (Tubo de ondas progresivas): para radares de 30 MHz a 15 GHz, buena potencia de salida.

Modulador

El modulador o pulsador es el elemento encargado de proporcionar pequeños pulsos de potencia al magnetrón. Esta tecnología recibe el nombre de "potencia pulsada". Gracias al modulador, los pulsos de RF que emite el oscilador están limitados a una duración fija. Estos dispositivos están formados por una fuente de alimentación de alto voltaje, una red de formación de pulsos (PFN) y un conmutador de alto voltaje (como un tiratrón).

Si en lugar de magnetrón se usa un tubo klistrón, este puede actuar como amplificador, así que la salida del modulador puede ser de baja potencia.

Diseño de la antena

Las señales de radio difundidas (broadcast) por una sola antena se propagan en todas las direcciones y, del mismo modo, una antena recibirá señales desde cualquier dirección. Esto hace que el radar se encuentre con el problema de saber dónde se ubica el blanco.

Los primeros sistemas solían utilizar antenas omnidireccionales, con antenas receptoras directivas apuntando en distintas direcciones. Por ejemplo, el primer sistema que se instaló (Chain Home) utilizaba dos antenas receptoras cuyas direcciones de observación formaban un ángulo recto, cada una asociada a una pantalla diferente. El mayor nivel de eco se obtenía cuando la dirección de observación de la antena y la línea radar-blanco formaban ángulo recto y, por el contrario, era mínimo cuando la antena apuntaba directamente hacia el objetivo. El operador podía determinar la dirección de un blanco rotando la antena de modo que una pantalla mostrase un máximo y otra un mínimo.

Una importante limitación de este tipo de solución era que el pulso se transmitía en todas las direcciones, de modo que la cantidad de energía en la dirección que se examinaba era solo una pequeña parte de la transmitida. Para que llegue una potencia razonable al blanco se requieren antenas direccionales.

Reflector parabólico

Los sistemas más modernos usan reflectores parabólicos dirigibles para estrechar el haz en el que se emite en broadcast el pulso. Generalmente el mismo reflector se utiliza también como receptor. En estos sistemas, a menudo se usan dos frecuencias radar en la misma antena para permitir control automático ("radar lock").

Guiaonda ranurada

La guía de onda ranurada se mueve mecánicamente para hacer el barrido y es adecuada para sistemas de búsqueda (no de seguimiento). Las guiaondas ranuradas son muy direccionales en el plano de la antena pero, al contrario que las parabólicas, no son capaces de distinguir en el plano vertical. Suelen usarse en detrimento de las parabólicas en cubiertas de barcos y exteriores de aeropuertos y puertos, por motivos de coste y resistencia al viento.

Phased arrays

Otro tipo de antenas que se suele usar para radares son los phased arrays. Un phased array consiste en una matriz (array) de elementos radiantes. La fase de la señal que alimenta cada uno de estos está controlada de tal manera que la radiación del conjunto sea muy directiva. Es decir, se juega con las fases de las señales para que se cancelen en las direcciones no deseadas y se interfieran constructivamente en las direcciones de interés.

El diagrama de radiación del array se obtiene como la interferencia de los campos radiados por cada una de las antenas. En recepción la señal recibida es una combinación lineal de las señales que capta cada antena. El diagrama de radiación total viene dado por el diagrama de radiación conjunto y el diagrama de radiación del elemento aislado.
phased arrays: NO es necesario MOvimiento Fisico para hacer el barrido

En el diseño de arrays intervienen muchos parámetros : número de elementos, disposición física de los elementos, amplitud de la corriente de alimentación, fase relativa de la alimentción y tipo de antena elemental utilizada. Configurando estos parámetros se pueden mejorar las características de radiación del diagrama de radiación individual : mejorar la directividad, mejorar la relación de lóbulo principal a secundario, conformar el diagrama para cubrir la zona de interés y tener la posibilidad de controlar electrónicamente el apuntamiento del haz principal.

El uso de los phased arrays se remonta a la Segunda Guerra Mundial, pero las limitaciones de la electrónica hacían que fueran poco precisos. Su aplicación original era la defensa anti-misiles. En la actualidad son parte imprescindible del sistema AEGIS y el sistema balístico MIM-104 Patriot. Su uso se va extendiendo debido a la fiabilidad derivada del hecho de que no tienen partes móviles. Casi todos los radares militares modernos se basan en phased arrays, relegando los sistemas basados en antenas rotatorias a aplicaciones donde el costo es un factor determinante (tráfico aéreo, meteorología,...) Su uso está también extendido en aeronaves militares debido a su capacidad de seguir múltiples objetivos. El primer avión en usar uno fue el B-1B Lancer. El primer caza, el MiG-31 ruso. El sistema radar de dicho avión está considerado como el más potente de entre todos los cazas .

En radioastronomía también se emplean los phased arrays para, por medio de técnicas de apertura sintética, obtener haces de radiación muy estrechos. La apertura sintética se usa también en radares de aviones.

Aplicaciones

Militares: radares de detección terrestre, radares de misiles autodirectivos, radares de artillería, radares de satélites para la observación de la Tierra.
Aeronáuticas : control del tráfico aéreo, guía de aproximación al aeropuerto, radares de navegación.
Marítimas: radar de navegación, radar anti-colisión. Meteorológicas: detección de precipitaciones (lluvia, nieve, granizo, etcétera).
Circulación y seguridad en ruta: control de velocidad de automóviles, radares de asistencia de frenado de urgencia (ACC, Adaptive Cruise Control).
Científicas: en satélites para la observación de la Tierra, para ver el nivel de los océanos, etc.

Radioastronomía

La radioastronomía es la rama de la astronomía que estudia los objetos celestes y los fenómenos astrofísicos midiendo su emisión de radiación electromagnética en la región de radio del espectro. Las ondas de radio tienen una longitud de onda mayor que la de la luz visible. En la radioastronomía, para poder recibir buenas señales, se deben utilizar grandes antenas, o grupos de antenas más pequeñas trabajando en paralelo. La mayoría de los radiotelescopios utilizan una antena parabólica para amplificar las ondas, y así obtener una buena lectura de estas. Esto permite a los astrónomos observar el espectro de radio de una región del cielo. La radioastronomía es un área relativamente nueva de la investigación astronómica, que todavía tiene mucho por descubrir.

En la actualidad, existen gigantescos radiotelescopios, permitiendo observaciones de una resolución imposible en otras longitudes de onda. Entre los problemas que la radioastronomía ayuda a estudiar, se encuentran la formación estelar, las galaxias activas, la cosmología, etc.

EL complejo de comunicaciones Goldstone Deep Space que integra la Deep Space Network de la NASA (DSN) se utiliza, entre otros, para radio astronomía y observaciones de radar del sistema solar y el universo.


Historia

Una de las primeras investigaciones de ondas de radio de origen extraterrestre fue llevada a cabo por Karl Guthe Jansky, un ingeniero de Bell Telephone Laboratories, en los comienzos de 1930. El primer objeto detectado fue el centro de la Vía Láctea, seguido por el Sol. Estos primeros descubrimientos fueron confirmados por Grote Reber en 1938. Después de la Segunda Guerra Mundial, en Europa y los Estados Unidos, los astrónomos desarrollaron importantes mejoras en la radioastronomía, y el campo de la radioastronomía comenzó a florecer.

Uno de los desarrollos más notables vino en 1946 con la introducción de la radio interferometría por Martin Ryle de Cavendish Astrophysics Group en Cambridge ( quien obtuvo el Premio Nobel por esto, y su trabajo de apertura sintética), también el espejo interferómetro de Lloyd desarrollado independientemente por Joseph Pawsey's en 1946 en la Universidad de Sydney. Dos temas, uno astronómico y uno técnico, dominaron la investigación en Cambridge desde fines de 1940 por más de treinta años. ¿Cuál era la naturaleza de las fuentes de radio discretas, o "estrellas de radio"? ¿Dónde estaban, cuáles eran ellas, ¿cuáles eran sus características?, ¿cuántas existían ahí afuera?, ¿cómo funcionaban y cuál era su significado en el universo? De importancia paralela era el rompecabezas de cómo idear las nuevas clases de radiotelescopio que aclararían estas preguntas astronómicas.

Avances

La radioastronomía ha llevado a un importante incremento en el conocimiento astronómico, particularmente con el descubrimiento de muchas clases de nuevos objetos, incluyendo los púlsars, quásars y las galaxias activas. Esto es debido a que la radioastronomía nos permite ver cosas que no son posibles de detectar en las astronomía óptica. Tales objetos representas algunos de los procesos físicos más extremos y energéticos en el universo.

La radioastronomía es también, en parte responsable por la idea de que la materia oscura es una importante componente de nuestro universo; las mediciones de radio de la rotación de las galaxias sugiere que hay muchas más masa en las galaxias que la que ha sido observada directamente. La radiación de fondo de microondas (CMB) fue detectada por primera vez utilizando radiotelescopios. Los radiotelescopios también han sido utilizados para investigar objetos mucho más cercanos a la tierra, incluyendo observaciones del Sol, la actividad solar y mapeos por radar del los planetas del Sistema Solar.

Los radiotelescopios pueden ser ahora encontrados por todo el mundo. Radiotelescopios muy distanciados unos de otros, son utilizados frecuentemente en combinación utilizando una técnica llamada interferometría para obtener observaciones de alta resolución que no pueden ser obtenidas utilizando un solo receptor. Inicialmente radiotelescopios distanciados por unos pocos kilómetros eran combinados usando interferometría, pero a partir de 1970, radiotelescopios alrededor de todo el mundo (incluso orbitando la tierra) son combinados para realizar mapeos interferómetros de gran tamaño (Very Long Baseline Interferometry (VLBI)).

Mapa de anisotropías de la radiación de fondo de microondas CMB obtenida por el satélite WMAP.

Radio interferometría

La dificultad de adquirir altas resoluciones con simples radiotelescopios llevaron a la radiointerferometría, desarrollada por los radioastrónomos británico Martin Ryle, al ingeniero, y radiofísico australiano Joseph Lade Pawsey y a Ruby Payne-Scott en 1946. Sorprendentemente, este primer uso de la radiointerferometría para observaciones astronómicas fue llevado a cabo por Payne-Scott, Pawsey y Lindsay McCready el 26 de enero de 1946 usando la radioantena SINGLE convertida en antena radar (arreglo de emisor) a 200 MHz, cerca de Sydney, Australia. Este grupo usó el principio de la interferometría con base al mar en donde su antena (formalmente un radar WWII) observando el sol al amanecer con interferencia, alcanzada por la radiación directa solar y la reflejada desde el mar. Con estas referencias de al menos ondas de 200 m, los autores determinaron que la radiación solar durante la fase de día, siendo mucho más pequeña que el disco solar. Y ese grupo australiano comenzó a trabajar con los principios de la apertura sintética en sus artículos de mediados de 1946 y publicados en 1947. Ese uso del interferómetro de mar fue exitosamente demostrado por numerosos grupos en Australia y en el RU durante la segunda guerra mundial, quienes observaron refracciones interferométricas (la radiación directa de retornos de radar y la señal reflejada del mar) desde aeronaves.

El grupo de Cambridge de Ryle y Vonberg observaron el sol en 175 MHz a mediados de julio de 1946 con un interferómetro Michelson consistente de dos radioantenas con espaciados desde decebas de metros a 240 metros. Todos mostraron que la radiorradiación era más pequeña que "10 arc min" en tamaño y detectaron una polarización circular del Tipo I bursts. Otros grupos habían detectado también polarización circular al mismo tiempo: David Martyn en Australia y Edward Appleton con J. Stanley Hey en RU.

Un moderno radiointerferómetro consiste en radiotelescopios ampliamente separados que observan el mismo objeto y se conectan juntos usando cable coaxial, guía de ondas, fibra óptica, u otro tipo de línea de transmisión. Eso no solo incrementó las recolecciones totales de señales, sino pudo también usarse en el proceso llamado apertura sintética que vastamente incrementó la resolución. Esta técnica trabaja superponiendo las (interferencias) de las señales de ondas de los diferentes telescopios en un principio donde las ondas se hacen coincidir con las mismas fases que añadirán unas a otras mientras dos ondas que tiene fases opuestas se cancelarán entre sí. Así se crea un telescopio combinado que tiene el tamaño de las antenas más apartadas en el arreglo. Para producir una imagen de alta calidad, se requiere un gran número de diferentes separaciones entre diferentes telescopios (separaciones proyectadas entre cualesquieras dos telescopios se llaman línea de base) - y con muchas diferentes líneas de base, como sea posible, se requiere para buenas calidades de imágenes. Por ejemplo el Very Large Array tiene 27 telescopios que dan 351 líneas de base independientes.

Arriba, imagen óptica de la peculiar galaxia M87, al medio: radioimagen de la misma galaxia usando interferometría (Very Large Array-VLA); abajo: imagen de la sección central (VLBA) usando un Very Long Baseline Array (Global VLBI) consistente en antenas conjugadas en EE.UU., Alemania, Italia, Finlandia, Suecia, España. La eyección de partículas estaría potenciada por un agujero negro en el centro de la galaxia.
Interferometría de mucha longitud de líneas de base

A comienzos de los 1970s, se producen mejoras en la estabilidad de los receptores de radiotelescopios permite telescopios en todo el mundo (y aún en órbita terrestre) combinando los Very Long Baseline Interferometry. En vez de conexiones físicas en las antenas, los datos recibidos en cada antena es apareada coninformación del tiempo, usando unreloj atómico local, y almacenando para posteriores análisis en cinta magnética o en disco duro. En los últimos años, los datos se correlacionan con datos de otras antenas similarmente registrados, para producir imágenes. Usando este método es posible sintetizar una antena que tiene efectivamente el tamaño de la Tierra. Las largas distancias entre los telescopios permiten resoluciones de mucha amplitud angular, más grandes que en otros campos de la astronomía. A altísimas frecuencias, es posible que los rayos sintetizados tienen menos de 1 miliarco segundo.

Los arreglos preeminentes VLBI que operan hoy son los Very Long Baseline Array (con telescopios en Norteamérica) y la Red europea VLBI (telescopios en Europa, China, Sudáfrica, Puerto Rico). Cada arreglo usualmente opera separadamente, y ocasionales proyectos se unen produciendo incrementos en la sensibilidad, y se referencia como "Global VLBI". Hay también una red VLBI: eL "Long Baseline Array", operando en Australia.

Luego de su acopio, los datos registrados en hard media han sido el único modo de desarrollar esos datos de cada telescopio para posteriores correlaciones. Sin embargo, la disponibilidad hoy mundialmente, de redes de fibra ópticas de banda muy ancha hace posible hacer VLBI en tiempo real. Esa técnica (referida como e-VLBI) fue primero usada por EVN (acrónimo en inglés Red Europea VLBI) que actualmente está incrementando el número de científicos en proyectos e-VLBI por año.

Radiocomunicación

La radiocomunicación es un sistema de telecomunicación que se realiza a través de ondas de radio u ondas hertzianas, y que a su vez está caracterizado por el movimiento de los campos eléctricos y campos magnéticos. La comunicación vía radio se realiza a través del espectro radioeléctrico cuyas propiedades son diversas a lo largo de su gama así cómo baja frecuencia, media frecuencia, alta frecuencia, muy alta frecuencia, ultra alta frecuencia, etc. En cada una de ellas, el comportamiento de las ondas es diferente.
Aunque se emplea la palabra radio, las transmisiones de televisión, radio, radar y telefonía móvil están incluidos en esta clase de emisiones de radiofrecuencia.


Historia


Las bases teóricas de la propagación de ondas electromagnéticas fueron descritas por primera vez por James Clerk Maxwell. Heinrich Rudolf Hertz, entre 1886 y 1888, fue el primero en validar experimentalmente la teoría de Maxwell.
El primer sistema práctico de comunicación mediante ondas de radio fue el diseñado por el Guillermo Marconi, quien en el año 1901 realizó la primera emisión trasatlántica radioeléctrica.

Transmisión y recepción


Una onda de radio se origina cuando una partícula cargada (por ejemplo, un electrón) se excita a una frecuencia situada en la zona de radiofrecuencia (RF) del espectro electromagnético. Otros tipos de emisiones que caen fuera de la gama de RF son los rayos gamma, los rayos X, los rayos infrarrojos, los rayos ultravioleta y la luz.
Cuando la onda de radio actúa sobre un conductor eléctrico (la antena), induce en él un movimiento de la carga eléctrica (corriente eléctrica) que puede ser transformado en señales de audio u otro tipo de señales portadoras de información.
El emisor tiene como función producir una onda portadora, cuyas características son modificadas en función de las señales (audio o video) a transmitir. Propaga la onda portadora así modulada. El receptor capta la onda y la «demodula» para hacer llegar al espectador auditor tan solo la señal transmitida.


Sistemas AM y FM


Amplitud Modulada

En el sistema de modulación de amplitud (AM), la señal (de baja frecuencia) se superpone a la amplitud de ondas hertzianas portadora (de alta frecuencia).

Frecuencia Modulada

En el sistema de modulación de frecuencia (FM), la amplitud de la onda portadora se mantiene constante, pero la frecuencia varia según la cadencia de las señales moduladoras. Este sistema permite eliminar parásitos e interferencias, y reproduce el sonido con mayor fidelidad.


Usos de las radiocomunicaciones


Radioayuda
Uno de sus primeros usos fue en el ámbito naval, para el envío de mensajes en código Morse entre los buques y tierra o entre buques. Actualmente también se usa en aeronavegación,

Radiodifusión AM y FM
Las primeras transmisiones regulares, comenzaron en 1920. Antes de la llegada de la televisión, la radiodifusión comercial incluía no solo noticias y música, sino dramas, comedias, shows de variedades, concursos y muchas otras formas de entretenimiento, siendo la radio el único medio de representación dramática que solamente utilizaba el sonido. Actualmente la radio es el medio en el que algunos géneros del periodismo clásico alcanzan su máxima expresión.

Radios comunitarias
En la historia reciente de la radio, han aparecido las radios de baja potencia, constituidas bajo la idea de radio libre o radio comunitaria, con la idea de oponerse a la imposición de un monólogo comercial de mensajes y que permitan una mayor cercanía de la radio con la comunidad.

Televisión
La televisión hasta tiempos recientes, principios del siglo XXI, fue analógica totalmente y su modo de llegar a los televidentes era mediante el aire con ondas de radio en las bandas de VHF y UHF. Pronto salieron las redes de cable que distribuían canales por las ciudades. Esta distribución también se realizaba con señal analógica; las redes de cable debían tener una banda asignada, más que nada para poder realizar la sintonía de los canales que llegan por el aire junto con los que llegan por cable. En los años 1990 aparecen los sistemas de alta definición, primero en forma analógica y luego, en forma digital.

Radioaficionados
La radioafición es tanto una afición como un servicio en el que los participantes utilizan varios tipos de equipos de radiocomunicaciones para comunicarse con otros radioaficionados para el servicio público, la recreación y la autoformación. Los operadoradores de radioafición gozan (y, a menudo en todo el mundo) de comunicaciones inalámbricas personales entre sí y son capaces de apoyar a sus comunidades con comunicaciones de emergencia y de desastres si es necesario.

Redes inalámbricas
El término red inalámbrica se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos.
Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho mas exigente y robusta para evitar a los intrusos.

sábado, 26 de junio de 2010

Identificación por Radiofrecuencia RFID

RFID (siglas de Radio Frequency IDentification, en español identificación por radiofrecuencia) es un sistema de almacenamiento y recuperación de datos remoto que usa dispositivos denominados etiquetas, tarjetas, transpondedores o tags RFID. El propósito fundamental de la tecnología RFID es transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio. Las tecnologías RFID se agrupan dentro de las denominadas Auto ID (automatic identification, o identificación automática).

Las etiquetas RFID son unos dispositivos pequeños, similares a una pegatina, que pueden ser adheridas o incorporadas a un producto, un animal o una persona. Contienen antenas para permitirles recibir y responder a peticiones por radiofrecuencia desde un emisor-receptor RFID. Las etiquetas pasivas no necesitan alimentación eléctrica interna, mientras que las activas sí lo requieren. Una de las ventajas del uso de radiofrecuencia (en lugar, por ejemplo, de infrarrojos) es que no se requiere visión directa entre emisor y receptor.

Una etiqueta RFID EPC en uso por Wal-Mart

Chip Rfid "pasivo" encapsulado para uso en uniformes y sector textil. Especial resistencia para lavanderías


Antecedentes

En la actualidad, la tecnología más extendida para la identificación de objetos es la de los códigos de barras. Sin embargo, éstos presentan algunas desventajas, como la escasa cantidad de datos que pueden almacenar y la imposibilidad de ser reprogramados. La mejora ideada constituyó el origen de la tecnología RFID; consistía en usar chips de silicio que pudieran transferir los datos que almacenaban al lector sin contacto físico, de forma equivalente a los lectores de infrarrojos utilizados para leer los códigos de barras.

Arquitectura

El modo de funcionamiento de los sistemas RFID es simple. La etiqueta RFID, que contiene los datos de identificación del objeto al que se encuentra adherido, genera una señal de radiofrecuencia con dichos datos. Esta señal puede ser captada por un lector RFID, el cual se encarga de leer la información y pasarla en formato digital a la aplicación específica que utiliza RFID.
Un sistema RFID consta de los siguientes tres componentes:

  • Etiqueta RFID o transpondedor: compuesta por una antena, un transductor radio y un material encapsulado o chip. El propósito de la antena es permitirle al chip, el cual contiene la información, transmitir la información de identificación de la etiqueta. Existen varios tipos de etiquetas. El chip posee una memoria interna con una capacidad que depende del odelo y varía de una decena a millares de bytes. Existen varios tipos de memoria:
  1. Solo lectura: el código de identificación que contiene es único y es personalizado durante la fabricación de la etiqueta.
  2. De lectura y escritura: la información de identificación puede ser modificada por el lector. Anticolisión. Se trata de etiquetas especiales que permiten que un lector identifique varias al mismo tiempo (habitualmente las etiquetas deben entrar una a una en la zona de cobertura del lector).
  3. Lector de RFID o transceptor: compuesto por una antena, un transceptor y un decodificador. El lector envía periódicamente señales para ver si hay alguna etiqueta en sus inmediaciones. Cuando capta una señal de una etiqueta (la cual contiene la información de identificación de esta), extrae la información y se la pasa al subsistema de procesamiento de datos.
  4. Subsistema de procesamiento de datos o Middleware RFID: proporciona los medios de proceso y almacenamiento de datos.

Tipos de tags RFID

Las tags RFID pueden ser activos, semipasivos (también conocidos como semiactivos o asistidos por batería) o pasivos. Los tags pasivos no requieren ninguna fuente de alimentación interna y son dispositivos puramente pasivos (sólo se activan cuando un lector se encuentra cerca para suministrarles la energía necesaria). Los otros dos tipos necesitan alimentación, típicamente una pila pequeña.

Comparación de un chip RFID con antena y una moneda de un Euro

La gran mayoría de las etiquetas RFID son pasivas, que son mucho más baratas de fabricar y no necesitan batería. En 2004, estas etiquetas tenían un precio desde 0,40$, en grandes pedidos, para etiquetas inteligentes, según el formato, y de 0,95$ para tags rígidos usados frecuentemente en el sector textil encapsulados en PPs o epoxi. El marcado de RFID universal de productos individuales será comercialmente viable con volúmenes muy grandes de 10.000 millones de unidades al año, llevando el coste de producción a menos de 0,05$ según un fabricante.[cita requerida] La demanda actual de chips de circuitos integrados con RFID no está cerca de soportar ese coste. Los analistas de las compañías independientes de investigación como Gartner and Forrester Research convienen en que un nivel de precio de menos de 0,10$ (con un volumen de producción de 1.000 millones de unidades) sólo se puede lograr en unos 6 u 8 años,[cita requerida] lo que limita los planes a corto plazo para una adopción extensa de las etiquetas RFID pasivas. Otros analistas creen que esos precios serían alcanzables dentro de 10-15 años.

A pesar de las ventajas en cuanto al coste de las etiquetas RFID pasivas con respecto a las activas son significativas, otros factores; incluyendo exactitud, funcionamiento en ciertos ambientes como cerca del agua o metal, y confiabilidad; hacen que el uso de etiquetas activas sea muy común hoy en día.

Backscatter en RFID.Para comunicarse, los tags responden a peticiones o preguntas generando señales que a su vez no deben interferir con las transmisiones del lector, ya que las señales que llegan de los tags pueden ser muy débiles y han de poder distinguirse. Además de la reflexión o backscatter, puede manipularse el campo magnético del lector por medio de técnicas de modulación de carga. El backscatter se usa típicamente en el campo lejano y la modulación de carga en el campo próximo (a distancias de unas pocas veces la longitud de onda del lector).

Uso actual

Algunas autopistas, como por ejemplo El carril de Telepeaje IAVE En las autopistas de CAPUFE En México la FasTrak de California, el sistema I-Pass de Illinois, el telepeaje TAG en las autopistas urbanas en Santiago de Chile, la totalidad de las autopistas pagas argentinas y la Philippines South Luzon Expressway E-Pass utilizan etiquetas RFID para recaudación con peaje electrónico. Las tarjetas son leídas mientras los vehículos pasan; la información se utiliza para cobrar el peaje en una cuenta periódica o descontarla de una cuenta prepago. El sistema ayuda a disminuir el entorpecimiento del tráfico causado por las cabinas de peaje.
Sensores como los sísmicos pueden ser leídos empleando transmisores-receptores RFID, simplificando enormemente la recolección de datos remotos.

Una etiqueta RFID empleada para la recaudación con peaje electrónico

Implantes humanos

Los chips RFID implantables, diseñados originalmente para el etiquetado de animales se está utilizando y se está contemplando también para los seres humanos. Applied Digital Solutions propone su chip "unique under-the-skin format" (formato bajo-la-piel único) como solución a la usurpación de la identidad, al acceso seguro a un edificio, al acceso a un ordenador, al almacenamiento de expedientes médicos, a iniciativas de anti-secuestro y a una variedad de aplicaciones. Combinado con los sensores para supervisar diversas funciones del cuerpo, el dispositivo Digital Angel podría proporcionar supervisión de los pacientes. El Baja Beach Club en Barcelona (España) utiliza un Verichip implantable para identificar a sus clientes VIP, que lo utilizan para pagar las bebidas. El departamento de policía de Ciudad de México ha implantado el Verichip a unos 170 de sus oficiales de policía, para permitir el acceso a las bases de datos de la policía y para poder seguirlos en caso de ser secuestrados. Sin embargo, el implante de los chips supone un elevado riesgo para la salud, ya que resultan altamente cancerígenos.

Amal Graafstra, un empresario del estado de Washington, en Estados Unidos, tenía un chip RFID implantado en su mano izquierda a principios de 2005. El chip medía 12 mm de largo por 2 milímetros de diámetro y tenía un radio de acción para su lectura de dos pulgadas (50 milímetros). La implantación fue realizada por un cirujano plástico, aunque el nombre del doctor no fue revelado. Cuando le preguntaron qué pretendía hacer con el implante, Graafstra respondió: "estoy escribiendo mi propio software y estoy soldando sobre mi propia materia, prácticamente esto es lo que deseo. Bueno, de forma más precisa, algo que tengo el tiempo y la inspiración para poder hacerlo. En última instancia sin embargo, pienso que el verdadero acceso sin llave requerirá un chip implantable con un sistema muy fuerte de cifrado; ahora tan sólo veo este tipo de cosas en un contexto personal.

Mano izquierda de Amal Graafstra con la situación planeada del chip RFID